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Abstract
The identification of melody, bass, chord and structure are important steps in

music analysis. This thesis presents a comprehensive tool to identify the melody and
bass in each measure of a Standard MIDI File, and provides chord labels and general
structure information. We also share an open dataset of manually labeled music
for researchers. We use a Bayesian maximum-likelihood approach and dynamic
programming as the basis of our work in the melody identification. We have trained
parameters on data sampled from the million song dataset [16, 21] and tested on
a dataset including 1703 measures of music from different genres. Our algorithm
achieves an overall accuracy of 89% in the test dataset. We compare our results to
previous work. For bass identification, since our algorithm is rule-based, we only
label the test set. And the bass identification achieves over 95% accuracy. Our
chord-labeling algorithm is adopted from Temperley [20] and tested on a manually
labeled test set containing 1890 labels. Currently, this algorithm achieves around
78% accuracy for chord root and chord type matching and around 82% accuracy for
chord root matching only. We also discovered an optimization: by removing notes in
melody channel, we can improve the accuracy for both evaluations by 1.3%. For the
structure analysis, we also provide a simple algorithm based on a similarity matrix
and give some analysis of the result. By automatically labeling and analyzing MIDI
files, a rich source of symbolic music information, we hope to enable new studies of
music style, music composition, music structure, and computational music theory.
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Chapter 1

Introduction

The field of Music Information Retrieval began with a focus on audio content-based search and
classification. After a decade of intense activity, it became clear that a major problem for machine
processing of music is a deep understanding of music structure, patterns, and relationships. Thus,
music analysis which identifies melody, bass, chords, and other elements is seen as an important
challenge for MIR. Recently, machine learning algorithms have dominated work in MIR. One
of the properties of machine learning algorithms is that they require a lot of data. There is a
wealth of data in the form of MIDI files, which have pitch, and beat information. This symbolic
representation of music is very difficult to extract directly and precisely from audio files. On
the other hand, humans do understand the concept of notes, pitches and beats. Working with
this level of representation is relevant to human music perception even if we cannot model the
transformation of audio into these representations. MIDI gives us the opportunity to extract
much useful information for studying music. But so far, there are not any systems that can
actually do a good job extracting data from MIDI files in general. Typically, researchers use
carefully selected or prepared MIDI files and look for particular information. As far as we know,
there is no comprehensive systems for MIDI file analysis. The aim of this thesis is to build a
comprehensive system that can extract melody, bass, harmony and structure information, which
is the basic information for the music theorist. It is a starting point for any kind of analysis in
music theory. The hope is that by building this tool, researchers will be able to get more useful
information from MIDI files and use it for various tasks. These tasks include automatic music
composition, building models for music listening (the models for music and music expectation
when people look at the music notes or listen to music), etc. So having music data to look at is
not only important for generating new music but also for studies of music listening. And because
there are so many music genres, in this thesis, we decide to focus on pop music.

The thesis consists of the following chapters: Chapter 2 on related work, Chapter 3 on
machine-readable music representations, Chapter 4 on melody analysis, Chapter 5 on bass anal-
ysis, Chapter 6 on harmony analysis, Chapter 7 on structure analysis and Chapter 8 presents my
conclusion.
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Chapter 2

Related Work

2.1 Melody and Bass Analysis

In the field of symbolic files, Skyline is a very simple algorithm proposed by Uitdenbogerd [22].
In brief, the idea of this method is to pick the highest pitch at any moment as belonging to the
melody. Chai and Vercoe offer an enhanced version of this approach [5]. In pop music, we
observe that there are often accompaniment notes above the melody line, leading to failure of
the Skyline algorithms. Uitdenbogerd presents three more methods [9]: 1) Top Channel (choose
the channel with the highest mean pitch), 2) Entropy Channel (choose the channel with the
highest entropy), and 3) Entropy Part (segment first, then use Entropy Channel). Shan [18]
proposed using greatest volume (MIDI velocity) because melody is typically emphasized through
dynamics. Li et al. identify melodies by finding common sequences in multiple MIDI files, but
this obviously requires multiple versions of songs [13]. Li, Yang, and Chen [12] use a Neural
Network and features such as chord rate, pronunciation rate, average note pitch, instrument, etc.,
trained on 800 songs to estimate the likelihood that a channel is the melody channel. Velusamy,
et al. [23] use a similar approach, but prune notes that do not satisfy certain heuristics and use a
hand-crafted linear model for ranking channels [12].

All of these algorithms assume that the melody appears on one and only one channel, so
the problem is always to select one of up to 16 channels as the melody channel. Depending on
the data, this can be a frequent cause of failure, since the melody can be expressed by different
instruments in different channels at different times. An interesting approach is Tunerank [25],
which groups and labels notes according to harmony and dissonance with other notes, pitch
intervals between consecutive notes, and instrumentation, without assuming the melody is in
only one channel.

Previous work is hard to evaluate, with accuracy reports ranging from 60% to 97%, no la-
beled public datasets, and few shared implementations. The properties of music arrangements
and orchestrations in MIDI files can cause many problems. The simplest case, often assumed
in the literature, is that the melody appears in one and only one channel. At least four more
complex conditions are often found: 1) The melody is sometimes played in unison or octaves
in another channel, 2) the melody switches from one instrument (channel) to another from one
phrase or repetition to another, 3) the melody is fragmented across channels even within a single
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measure (this happens but seems to be rare), and 4) there are multiple overlapping melodies as
in counterpoint, rounds, etc.

Unlike melody, there is not so many papers that discuss bass extraction in MIDI files. One
research area that is related is bass transcription from audio [17]. However, since this thesis will
focus on symbolic data, we will not discuss the audio transcription topic here.

There are some applications of detected bass lines. One of them is automatic music genre
classification using bass lines [19]. Beside that, the output of our system can also be used in
music generation systems.

2.2 Chord Analysis

Temperley [20] proposes an algorithm for harmonic analysis. It generates a representation in
which the piece is divided into segments labeled with roots. One of the major innovations of it
is that pitches and chords are both represented on a spatial representation known as the “line of
fifths”.

The dataset is the eternal topic when we consider a computational model for analyzing music.
In the audio area, there are some datasets that have been well labeled. For example, Burgoyne [4]
proposes such a dataset. Working with a team of trained jazz musicians, they have collected time-
aligned transcriptions of the harmony in more than a thousand songs selected randomly from the
Billboard “Hot 100” chart in the United States between 1958 and 1991. However, in the symbolic
area, such manually labeled datasets are very rare. One method is to convert chord information
from leadsheets. Lim et al. [14] publish a CSV Leadsheet Database which contains a lead sheet
database provided by Wikifonia.org. It has Western music lead sheets in MusicXML format,
including rock, pop, country, jazz, folk, RnB, childrens song, etc. The dataset is split into two
sets: a training set of 1802 songs, and a test set of 450 songs. However, because leadsheets do
not contain notes other than the melody, it is hard to consider this as a training or testing dataset
for the chord analysis task.

Pardo [15] also describes a system for segmenting and labeling tonal music based on the
template matching and graph-search techniques. And his idea about evaluation also inspires our
evaluation methods in this thesis.

2.3 Structure Analysis

Dannenberg and Goto [6] introduce methods to analyze textures, repetition of phrases or entire
sections, and the algorithms to leverage the similarity matrix are quite inspiring. Our algorithm
will take some inspiration from this work, although the analysis space is changed from audio to
MIDI. And Klapuri et al. [10] gives an overview of state-of-the art methods for computational
music structure analysis, where the general goal is to divide an audio recording into temporal
segments corresponding to musical parts and to group these segments into musically meaningful
categories. For example, Lerdahl et al. [11] models music understanding from the perspective of
cognitive science and a grammar of music with the aid of generative linguistics, which is also a

4



kind of structure analysis. Bruderer et al. [2] investigate the perception of structural boundaries
to Western popular music and examine the musical cues responsible for their perception.

Goto and Dannenberg [8] introduce some applications and interfaces that are enabled by
advances in automatic music structure analysis. One of them is the SmartMusicKIOSK inter-
face [7]. A user can actively listen to various parts of a song, guided by the visualized music
structure (“music map”) in the window.
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Chapter 3

Machine Readable Music Representation

3.1 Introduction to MIDI
Currently, MIDI is one of the most popular formats for storing the music information. In this
section, we will introduce some properties of MIDI to explain the parts that will be used in our
research and the information that we ignore.

We can consider a MIDI file to be a list of events of different categories. In general, there are
three major categories: channel event, system event and meta event. A channel event contains a
channel number (in the specification of MIDI, there are 16 channels, each channel can be as-
signed an instrument) and is used to represent note on/off, control change, program (instrument)
change, pitch wheel, etc. The system event contains start, stop and reset, etc. commands. The
meta event contains time signature, tempo, etc. MIDI files do not necessary tell what is the beat
number or measure number for each note. The meta event will be used in our system to identify
beats and measures. If the meta events of time signature and tempo are missing, that piece will be
considered as invalid input to our system. In our research, we are mainly concerned with pitches,
durations, and instruments. So we ignore many events associated with synthesizes control, such
as volume and pitch wheel events.

Because the MIDI file is stored in a binary format, it is not very convenient for programmer
to read/write MIDI information. In our system, we use Serpent1 to read binary MIDI files and
then write the content that we need to an ASCII text file. Our algorithms only consider the
information in the text files instead of the original MIDI file.

3.2 Music Representation
How to store music information in a digital computer is an essential concern when we design a
music processing system. In this section, we will discuss the music representation for the output
of our system. Since there are mainly four parts in our output: melody, bass, harmony, and
structure, we will list the specification below:

1https://www.cs.cmu.edu/ music/serpent/serpent.htm

7



Considering that there are many researchers using Matlab, our music representation will be
saved in a CSV format, which has at least two advantages: 1) it is easy to check the correctness
by eye; 2) it is easy to read CSV data in a variety of languages such as Matlab or Python. This
design may introduce an extra cost of storage, but nowadays memory is much cheaper than
decades ago when the Standard MIDI File format was designed. So we think this convenience
and space trade-off is reasonable.
• Melody

In our output, we use the quantization to restrict the data to integers. We use 1
24

beat as
the minimal unit for duration because it can represent 32nd notes and 64th triplets, which
is fine enough for almost any rhythm. So the melody note in the first measure (m) second
beat (b) which has the duration(b) of one beat, pitch (p) of 60 (the C4 on the keyboard),
velocity (v) of 127, channel (c) of 0, instrument (i) number of 1 (piano) is arranged as
Table 3.1

Table 3.1: Melody Representation

m b d p v c i
0 24 24 60 127 0 1

• Bass
The bass representation is similar to melody. For example, the bass note in the second
measure (m) first beat (b) which has the duration (b) of four beats, pitch (p) of 36 (the C2
on the keyboard), velocity (v) of 77, channel (c) of 1, instrument (i) number of 32 (acoustic
bass guitar) is arranged as Table 3.2

Table 3.2: Bass Representation

m b d p v c i
1 0 96 48 77 1 33

• Harmony
Unlike melody and bass, in harmony parts, the pitch, velocity, channel, and instrument
are ignored. Instead, we encode the root, type and pitch class set. The root is an integer
from 0 to 11 (chromatic scale, [C, C#/Db, D, ..., B]). The type is the classification such as
major or minor, represented as an integer. The mapping from number to detail meaning
can be found in Table 3.3. The pitch class set is a number to represent a pitch class vector
as a decimal integer. For example, the C major chord has the pitch class of C, E, and G.
The pitch class vector is Table 3.4. In binary, with C as the low order bit, we can encode
the set {C, E, G} as number {0, 4, 7} or the binary number 000010010001B, which is
the decimal number 145. We can use the pitch class set to represent rare chords without
conventional types. Also, we do not distinguish, say, Major from Major-Seventh chords,
so the pitch class set gives additional information on chords. Note also that the pitch class
set alone is not sufficient information. For example, C-major-6th has the same pitch class
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set as A-minor-7th. The pitch class set is simply the set of all pitches that are observed
within the segment of music labeled by the chord. For example, suppose music experts
consider the true chord type to be a G dominant 7 chord, but while the chord is playing,
the melody plays not only chord tones but non-chord passing tones of Ab and F#. Our
chord label will be G Major (we do not consider dominant seventh chords to be a different
category. The pitch class set will contain all the observed pitch classes: {D, F, F#, G, Ab,
B}. Alternatively, if the true chord type is G dominant 7 and we have the same melody,
but the fifth (D) is not played, then the pitch class set will not contain the fifth (D): {F, F#,
G, Ab, B}.

Table 3.3: Harmony Representation

# Meaning
0 Major
1 Minor
2 Diminished
3 Augmented
4 Suspended 4
-1 Others

Table 3.4: C Major Pitch Class Vector

B A# A G# G F# F E D# D C# C
0 0 0 0 1 0 0 1 0 0 0 1

So a C major chord in the first measure (m), first beat (b), with the duration (d) of 4
beats, root (r) of C, type (t) of Major chord and pitch class vector (s) of 145 is arranged as
Table 3.5

Table 3.5: Harmony Representation

m b d r t s
0 0 96 0 0 145

• Structure
To represent structure, we only consider the measure, duration and section information.
As Table 3.6 shows, the first section starts from the first measure and lasts for 8 measures.
The first section repeats once (9th-16th measures). The second section starts from the 17th

measure and lasts for 8 measures. Then, the first section repeats again. So that is an
AABA structure. And in this thesis, we only consider the very high-level structure so the
very detailed structures will not be shown. Also notice here the unit of duration is not 24th

but the measure, and numbering is zero-based, i.e. 0 denotes the 1st measure, etc.
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Table 3.6: Example Structure Representation

m d s
0 8 0
8 8 0

16 8 1
24 8 0
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Chapter 4

Melody Analysis

Melody identification is an important early step in music analysis. In this chapter, we present
a tool to identify the melody in each measure of a Standard MIDI File. We also share an open
dataset of manually labeled music for researchers. We use a Bayesian maximum-likelihood
approach and dynamic programming as the basis of our work. We have trained parameters on
data sampled from the million song dataset [16, 21] and tested on a dataset including 1703
measures of music from different genres. Our algorithm achieves an overall accuracy of 89% in
the test dataset. We compare our results to previous work.

4.1 Introduction
When we listen to a piece of music, the melody is usually the first thing that catches our attention.
Therefore, the identification of melody is one of the most important elements of music analysis.
Melody is commonly understood to be a prominent linear sequence of pitches, usually higher
than harmonizing and bass pitches. The concept of melody resists formalization, making melody
identification an interesting music analysis task. Melody is used to identify songs. Often, other
elements such as harmony and rhythm are best understood in relation to melody.

Many music applications depend on melody, including Query-by-Humming systems, music
cover song identification, emotion detection [24], and expressive performance rendering. Many
efforts in automatic composition could benefit from training data consisting of isolated melodies.

There has been a lot of research on extracting melody from audio [9]. The problem is gen-
erally easier for MIDI than audio because at least notes are already identified and separated.
However, compared to audio, there seems to be less research on melody extraction. Most of the
research on MIDI melody is on channel-level identification. This paper will propose an algo-
rithm combining Bayesian probability models and dynamic programming to extract melody at
the measure level.

4.2 Dataset
In most related work, published links to datasets have expired, so we collected and manually
labeled a new dataset which contains the training data of 5823 measures in 51 songs and test
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Figure 4.1: Measure Level Melody Channel Distribution

data of 1703 measures in 22 songs. For each song in the training data, the melody is mostly all
on one channel, which is labeled as such. (This made labeling much easier, but we had to reject
files where the melody appeared significantly in multiple channels or there is no melody at all.)
In the test data, the melody is not constrained to a single channel, and each measure of the song
is labeled with the channel that contains the melody. Measure boundaries are based on tempo
and time signature information in the MIDI file. The MIDI files are drawn from songs in the
Lakh dataset [16]. This collection contains MIDI files that are matched to a subset of files in the
million song dataset [21]. We used tags there to limit our selection to pop songs.

The test data is collecting from Chinese, Japanese, and American pop songs. We specifically
chose popular music because melody is usually present and there is usually a single melody.
In addition, we hope to use this research in learning about melody structure in popular music.
Figure 4.1 is the distribution of measure level channel number in test data. Channel 0 is most
popular melody channel with around 38%. Some channels in our dataset has no existing data,
such as channel 2, channel 5, channel 8, channel 9 and channel 15.

It might be noted that there are many high quality MIDI files of piano music. Since all piano
notes are typically on one channel, this can make the melody identification or separation a more
challenging problem, and different techniques are required. We assume that in our data, once
the channel containing the melody is identified, it is fairly easy to obtain the melody. Either the
melody is the only thing present in the channel, or the melody is harmonized, and the melody is
obtained by removing the lower notes using the Skyline algorithm.
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4.3 Algorithm
Our problem consists of labeling each measure of a song with the channel that contains the
melody. (It would be useful also to allow non-labels, or nil, indicating there is no melody, but
our study ignores this option.) The algorithm begins with a Bayesian model to estimate Mm,c,
the probability that channel c in measure m contains the melody. The estimation uses features
that are assumed to be jointly normally distributed and independent. Features are calculated
from the content of each channel, considering the measure itself and N previous and subsequent
measures, with N ∈ 0, 1, .... In all of our experiments, we assume that melody never appears on
channel 10, which is used for drums in General MIDI.

Although we could stop there and report the most likely channel in each measure,

cm = argmax
c

Mm,c (4.1)

this does not work well in practice. There are many cases where a measure of accompaniment,
counter-melody or bass appears to be more “melody-like” than the true melody. (For example,
the melody could simply be a whole note in some measures.) However, it is rare for the melody
to switch from one channel to another because typically the melody is played by one instrument
on one channel. Channel switches are only likely to occur when the melody is repeated or on
major phrase boundaries.

We can consider the melody channel for each measure, cm, as a sequence of hidden states
and per-measure probabilities as observations. We wish to find the most likely overall sequence
cm according to the per-measure probabilities, and taking into account a penalty for switching
channels from one measure to the next. We model the probability of the hidden state sequence
cm as:

P (cm) =
∏
m

Mm,cmScm−1,cm (4.2)

where Scm−1,cm = 1 if there is no change in the channel (cm−1 = cm), and Scm−1,cm is some
penalty less than one if there is a channel change (cm−1 6= cm). Thus, channel switches are
allowed from any measure to the next, but channel switches are considered unlikely, and any
labeling that switches channels frequently is considered highly unlikely.

The parameters of this model must be learned, including: statistics for features used to es-
timate Mm,c, the best feature set, the number of neighboring measures N to use in computing
features, and the penalty S for changing channels. We select the feature set and compute feature
statistics using our training dataset, and we evaluate their performance and sensitivity to N and
S using the test dataset.

4.3.1 Bayesian Probability Model
The probability of melody given a set of features is represented by Equation 4.3, where C0 is the
condition that the melody is present, C1 indicates the melody is not present, xi are feature values,
and n is the number of real-valued features. The details of features will be discussed in a later
paragraph.

P (C0|x1, . . . , xn) (4.3)
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By Bayes’ theorem, this conditional probability can be rewritten as Equation 4.4.

P (C0|x1, . . . , xn) =
P (C0)P (x1, . . . , xn|C0)

P (x1, . . . , xn)
(4.4)

With the assumption of independence for each feature, we can rewrite this as Equation 4.5:

P (C0|x1, . . . , xn) =
1

Z
P (C0)

n∏
i=1

P (xi|C0) (4.5)

where Z is:

Z = P (x1, . . . , xn) =
1∑

k=0

(P (Ck)
n∏

i=1

P (xi|Ck)) (4.6)

Our features xi are continuous values, and we assume they are distributed according to a Gaussian
distribution as in Equation 4.7. Under this assumption, we can simply collect feature statistics
µi,k and σi,k from training data to estimate the probability model.

P (xi = v|Ck) =
1√

2πσ2
i,k

e
−

(v−µi,k)
2

2σ2
i,k (4.7)

We now describe the details of features, which are note density, vel mean, vel std, pitch mean,
pitch std, IOI mean, and IOI std:

Note Density

The note density is the sum of all note durations divided by the total length of the music (Equation
4.8). A melody without rests has a note density of 1, a rest has note density of 0, a sequence of
triads without rests has a note density of 3, etc.

note density =
Σnotenote.dur
total length

(4.8)

Velocity

We take the mean and standard deviation of velocity (Equations 4.9 and 4.10).

vel mean =
ΣN

i=1notei.vel
N

(4.9)

vel std =

√
1

N − 1
ΣN

i=1(notei.vel− vel mean)2 (4.10)
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Pitch

We take the mean and standard deviation of pitch (Equations 4.11 and 4.12).

pitch mean =
ΣN

i=1notei.pitch
N

(4.11)

pitch std =

√
1

N − 1
ΣN

i=1(pitchi.vel− pitch mean)2 (4.12)

Inter-Onset Interval

The Inter-Onset Interval, or IOI, means the interval between onsets of successive notes. Consid-
ering that ornaments and chords may introduce a very short IOIs, we set a window of 75 ms, and
when two note onsets are within that window, we treat them as a single onset [1]. IOI calculation
is described in detail in Algorithm 1.

Result: The mean and standard deviation of a list of notes in onset-time order
stats is an object that implements the calculation of mean and standard deviation;
note[i] is the ith note;
N is the number of notes;
i← 0;
while i < N do

j ← i+ 1;
while (j < N) ∧ (note[j].on time− note[j − 1].on time) < 0.075 do

j ← j + 1;
end
if j < N then

IOI ← note[j].on time− note[i].on time;
stats.add point(IOI);

end
i← j;

end
IOI mean← stats.get mean();
IOI std← stats.get std();

Algorithm 1: IOI Feature Calculation

4.3.2 Training data
We compute features for each measure and channel of the training data. For feature selection,
we use cross-validation, dividing the training songs into 5 groups, holding out each group and
estimating µi,k and σi,k from the remaining training data, and evaluating the resulting model by
counting the number of measures where the melody channel is judged most likely by the model.
We take the average result over all five groups.
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After doing this for every combination of features (7 features, thus 127 combinations), for
various values of N (the maximum distance to neighboring measures to use in feature calcula-
tion), we determine the features that produce the best result for each value of N .

We then re-estimate the probability model using all of the training data. In principle, we
should also use the training data to learn the best window size N and the best penalty S, but in
our training data, melodies are all in one channel, so the ideal value of N for this data should
be large, and the ideal S should be zero (highest penalty) to prevent the melody from changing
channels. Instead, we will determine N and S from our test data, where every measure is labeled
as melody or not, and we will report how these parameters effect accuracy using the test dataset.

4.3.3 Melodic probability
To prepare for the dynamic programming step, we compute Mm,c, which is the natural log of
the probability of melody in channel c at measure m. (The feature values are different for each
combination of m and c.) In the next step, note that if we find the labels with the greatest sum of
log probabilities, it is equivalent to finding the labels with the greatest product of probabilities.
Logarithms are used to avoid numerical underflow.

4.3.4 Dynamic Programming
We use dynamic programming to select the channel containing the melody in each measure.
Algorithm 2 shows how the assignment of channels maximizes the sum of Mm,c values adjusted
by subtracting SP = − log(S) each time the melody changes channels. The backtracking step
is not shown since it is standard.1

4.4 Experiment and Result

4.4.1 Training
We tried different combinations of features, and the results are shown in Table 4.1 for windows
with 5 measures (N = 2). The top 5 feature sets are shown along with the mean and standard
deviation of accuracy across 5-fold cross-validation. Differences among the top feature sets are
minimal. We use all features except velocity standard deviation.

Table 4.2 shows the results using each feature individually for 5-measure windows. This
shows that all features offer some information (random guessing would be 1/15 or less than 7%
correct), but no single feature works nearly as well as the best combination.

If we assume the melody appears in only one channel, which is mostly the case for this
training dataset, we can consider the measure-by-measure melody channel results as votes, pick-
ing the channel with the majority of votes as the melody channel. Our best feature set (all but
velocity standard deviation) gives an accuracy of 96% (2 errors out of 51 songs), using 5-fold
cross-validation. In the next section, we relax the assumption that the melody appears in only
one channel.

1https://en.wikipedia.org/wiki/Viterbi algorithm
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Result: For each measure, determine the channel containing the melody.
N is the number of measures, indexed from 0 to N − 1;
C is the number of channels, indexed from 0 to C − 1;
SP is channel switch penalty, a parameter; SP = -ln(S);
Am,c is the accumulated score for measure m and channel c;
Bm,c stores the optimal channel number of previous measure;
Mm,c tells how melodic is channel c in measure m;
for i in [0 . . . C) do

A0,i ←M 0,i;
end
for m in [0 . . . N) do

for c in [0 . . . C) do
x← Am−1,c + Mm,c;
Bm,c = c;
for i in [0 . . . C) do

y ← Am−1,i + Mm,c − SP ;
if c 6= i ∧ y > x then

x← y;
Bm,c ← i;

end
end
Am,c ← x;

end
end

Algorithm 2: Dynammic Programming
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Table 4.1: Mean and standard deviation of accuracy in 5-fold cross validation using the top 5
feature sets, window size = 5. Here, nd means note density, pm means pitch mean, ps means
pitch std, im means IOI mean, is means IOI std, vm means vel mean, and vs means vel std.

nd pm ps im is vm vs mean std
1 1 1 1 1 1 0 72.40% 7.20%
1 1 0 1 1 1 0 71.60% 7.06%
1 1 1 1 1 1 1 71.40% 8.26%
1 1 1 1 0 1 0 71.40% 7.70%
1 1 1 1 0 1 1 71.00% 8.83%

Table 4.2: Mean and standard deviation of accuracy in 5-fold cross validation using individual
features, window size = 5

nd pm ps im is vm vs mean std
1 0 0 0 0 0 0 45.80% 7.22%
0 1 0 0 0 0 0 44.60% 8.11%
0 0 1 0 0 0 0 35.80% 6.50%
0 0 0 1 0 0 0 31.00% 2.55%
0 0 0 0 1 0 0 30.40% 5.64%
0 0 0 0 0 1 0 32.00% 5.87%
0 0 0 0 0 0 1 20.60% 4.10%

4.4.2 Testing
Our test dataset labels each measure with a set of channels containing melody. In measures
with no melody, this is the empty set. In some measures, the melody is duplicated in different
channels, so the label can can contain more than one channel. Note that if we can identify
one channel containing the melody, it is simple to search for copies in the other melodies. Our
algorithm labels every measure with exactly one melody channel. We consider the output to be
correct either if it is in the set of true melody channels according to our manual labels, or if
the label is the empty set. Typically, the empty set (no melody label) appears in introductions,
endings, and measures where the melody channel rests. In these cases (approximately 12% of all
measures), there is no clearly correct answer, so any output is counted as correct.

We evaluated accuracy on the test dataset with many values of N and SP . For each value
of N , we used the best feature set as determined from the training data and then evaluated the
system with different values of SP . The results are shown in Figure 4.2.

Since N and SP are optimized on the test dataset to obtain a best accuracy of 89.15%, there
is some risk of overfitting parameters to the test data. Given more labeled data, we would have
used a different dataset to select N and SP , and then we could evaluate the entire system on the
test dataset. Instead, we argue that the system is not very sensitive to N or SP , so overfitting is
unlikely. Figure 4.3 shows how accuracy is affected by varying the window size using an optimal
value of SP = 36 (again, the window includes the measure±N measures, so the window size is
2N + 1). This figure shows that 5-measure windows worked the best, but windows up to about
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Figure 4.2: Accuracy for different values of window size and switch penalty.

Figure 4.3: Accuracy on the test dataset vs. Window Size (= 1 + 2N ) for Switch Penalty = 36.

15 measures also work well, with just a few percent variation in accuracy.
Figure 4.4 shows how the accuracy is affected by varying SP , the switch penalty, using the

optimal value of N = 2. The best performance is obtained with SP between 30 and 38, but any
value from 2 to 38 will achieve performance within a few percent of the best. Since both graphs
are fairly flat around the best values of N and SP , the exact values of these parameters are not
critical for good performance. In fact, we would expect the best values may depend upon style,
genre, and other factors.

From the results, we can observe that the increase of window size helps the performance.
The highest accuracy goes from 58.00% to 89.15% when the window size grows from 1 to 5.
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Figure 4.4: Accuracy on the test dataset vs. Switch Penalty with Window Size = 5. The highest
accuracy is 89.15% using any Switch Penalty ∈ {30, 32, . . . 38}.

However, accuracy does not continue to increase for even larger windows. We believe the size
of 5 measures is large enough to obtain some meaningful statistical features yet small enough to
register when the melody has switched channels. In the next section, we analyze some specific
examples of success and failure. We also see that the switch penalty matters. When we set the
penalty to zero, we get the locally best choice of melody channel at each measure, independent
of other measures, but it seems clear that this “locally best, indepenent” policy is not particularly
good, and this is why we introduced the Viterbi step to our algorithm. On the other hand, when
the penalty is very large, we force all measures to be labeled with the same channel. This is
not a good policy either, with at best 71.24% accuracy. The results show that our Viterbi step is
effective in using context to improve melody identification.

4.5 Analysis

To better understand our approach, we analyzed some songs in our test dataset.

4.5.1 A Successful Sample

In most of the cases, this algorithm works well. For example, the figure 4.5 shows a clip from
the popular song “Hotel California.” In the figure, the melody is labeled by our algorithm in
red (at the top) and other notes are shown in yellow. Notice that this melody is not particularly
“melodic” in that it only uses two pitches and there is a lot of repetition. This is one illustration
of the need for multiple features and statistical methods. The features for the melody channel
have a higher likelihood according to our learned probabilistic model, and the melody is correctly
identified.
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Figure 4.5: The melody detected in the song “Hotel California.”

4.5.2 Failed Samples

A failure case is shown in Figure 4.6. Here, the detected melody is shown in red at the top of
the figure. The same (red) channel actually contained the melody in the immediately preceding
channels, but at this point the melody switched to another channel, shown below in yellow. (In
the figure, the lower melody is visually separated for clarity, but both channels actually occupy
the same pitch range.) Evidently, the algorithm continued to label the top (red) channel as melody
to avoid the switch penalty that would be required to label the melody correctly. In fact, the true
(yellow) melody appeared earlier in the top (red) channel, so perhaps a higher-level analysis of
music structure would also be useful for melody identification and disambiguation.

Figure 4.6: The algorithm identified the top (red) channel as melody of “Being,” but the correct
melody is shown in yellow at the bottom.

Another song in our dataset is “Ali Mountain.” In this piece, at measure 12, the melody is
split across two different channels, represented in red (darker) and yellow (lighter) in Figure 4.7.
Taken together, the combined channels would be judged to be very melodic. However, when we
consider the channels separately, it is hard to hear whether either is part of a melody, and our
algorithm does not rate either channel highly. Since we assume that the melody will be played
by one and only one channel within a measure, the melody is not identified in this test case.
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Figure 4.7: Two channels ensemble the melody

4.6 Conclusion
In this paper, we contributed a novel algorithm to detect the melody channel for each measure in
a MIDI file. We utilize a Bayesian probability model to estimate the probability that the melody
is on a particular channel in each measure. We then use dynamic programming to find the most
likely channel for melody in each measure considering that switching channels from measure to
measure is unlikely. We obtained an overall accuracy of 89% on our test dataset, which seems
to compare favorably to most other results in the literature. The lack of a large shared dataset
prohibits a detailed comparison.

Our dataset, including Standard MIDI Files, melody labels, associated software, and docu-
mentation are available at the following website:
http://www.cs.cmu.edu/∼music/data/melody-identification.
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Chapter 5

Bass Analysis

5.1 Introduction

Beside the melody, the bass part is also very important for music generation, listening and music
analysis. The movement of the bass influences the inversion of harmony. Some times, the rhythm
of the bass will be the spotlight in a piece of music. Thus, the identification of bass plays one of
the key roles in music analysis. Also, harmony and rhythm analysis refer to the information in
the bass. A change in the bass often indicates a change of harmony. Many efforts in automatic
composition could benefit from training data consisting of isolated bass.

Compared to the melody analysis, it is not so difficult to do the bass analysis. The reason is
that melody can appear in the top, middle or even in the bottom pitch range. However, the bass
part seldom appears in a middle or high part. Thus, this problem can be solved by a relatively
simple algorithm. This thesis will propose a simple algorithm combining to extract bass at the
measure level.

5.2 Algorithm

The algorithm for bass analysis is relatively simple compared to melody analysis. Roughly, it
consists two parts: 1) pitch mean calculation and 2) argmax selection. We can easily calculate
the pitch mean for each measure. The bass channel for each measure is the channel that has the
lowest pitch mean, as described by Algorithm 3

5.3 Experiment and Result

Since the algorithm for bass analysis is deterministic, which means there is no training process,
we only label the test dataset for this part. As same with melody analysis, the MIDI files are read
and transformed to the CSV text file format. Then the system runs the simple algorithm we just
discussed. The criterion that we use to evaluate the algorithm is the same as with melody. The
overall accuracy is 97.36%
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Result: For each measure, determine the channel containing the bass.
N is the number of measures, indexed from 0 to N − 1;
C is the number of channels, indexed from 0 to C − 1;
Mm,c tells the pitch mean of channel c in measure m if there is no note, assign +∞;
Am tells the bass channel in measure m;
for m in [0 . . . N) do

c′ ← argmincMm,c;
if Mm,c == +∞ then

Am ← null;
end
else

Am ← c′;
end

end
Algorithm 3: Simple Bass Analysis Algorithm

12 songs (among the 22) get 100% accuracy. 9 other songs have the accuracy range of [90%,
100%). Only 1 out of 22 has the lowest accuracy, which is 80%. The reason is that in our simple
algorithm, there is no restriction or penalty for channel switching. So when the pitch mean of the
accompaniment is lower than the bass channel, the result will switch immediately. One method
to alleviate this is to using an algorithm that has some penalty for the bass channel switch.

5.4 Conclusion
Compared to melody analysis, bass analysis is much easier. We use a bass version of the Skyline
algorithm to solve this problem. It is easy to implement and the time complexity is linear of the
input size.
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Chapter 6

Chord Analysis

6.1 Introduction
Compared to melody and bass which provide a horizontal continuity through time, chords or
harmony represent vertical connections across voice in music. Sequences of specific chords are
used in analyzing higher levels of music functions. For example, the progress of the Dominant
Chord to the Tonic Chord can be considered as evidence of an Authentic Cadence. The different
modes of chords also provide different harmonic functions. In the same example, according to
the inversion and the highest note, the cadences can be Perfect Authentic Cadence (the chords are
in root position, and the tonic is in the highest voice of the final chord), root position Imperfect
Authentic Cadence (similar to a perfect authentic cadence, but the highest voice is not the tonic)
or inverted Imperfect Authentic Cadence (similar to a Perfect Authentic Cadence, but one or both
chords is inverted). In undergraduate music education, Harmony is also one of the most important
courses. Harmonic analysis involves human judgement and subjective decision making because
music is full of non-chord tones that only suggest chords and harmonic function. Chord labels
are ambiguous. However, chord analysis is very important because it provides an explanation of
the music. One promising application is that harmonic analysis can be used as input to a music
generation system. For example, an algorithm proposed by Brunner [3] generates music by an
advanced machine learning model based on generated chords.
The analysis of chords includes several aspects: 1) indicating the starting and ending points of
each chord; 2) providing the root of the chord; 3) providing the mode of the chord.

In our representation, the starting and ending points of each chord are indicated by time and
duration, which are indicated in beats. The root is given directly. The mode is indicated roughly
by the chord type, with additional details encoded as the pitch class set.

6.2 Dataset
One dataset that I used in chord analysis is from David Temperley, a corpus of 45 excerpts of
tonal music. The excerpts are from the Kostka and Payne music theory textbook (Kostka and
Payne 1984), hereafter referred to as the KP corpus. In this dataset, chords are labeled by the
pair: timestamp and chord root, without type information. In this thesis, we contribute a chord
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Table 6.1: Chord Notations
Chord Symbol Chord Name Example Notes

m Minor C Eb G
M Major C E G

aug Augmented C E G#
dim Diminished C Eb Gb
sus4 Suspended Fourth C F G

analysis dataset with manual labels. There are 20 songs with 1890 chord labels in total. This
dataset contains not only root information but also type information for each chord. We use this
dataset to test our system.

It is very time-consuming to label the dataset manually. There are over 800 pages music
notes for our current dataset and for each page it takes several minutes to label. Comparing to
other fields such as Computer Vision, the labels of music is much hard to get.

6.3 Definition of Chords
Chord symbols, names, and examples can be found in Table 6.1. As we introduced in Chapter 3,
there are only a subset of chord types (major, minor, augmented, diminished and suspended 4)
presented in our output. The detailed pitch class information is also presented to compensate the
simplification of chord type.

We decided to use simplified chord types because chord types are often ambiguous. For
example, a C13 chord may or may not contain a fifth or ninth or eleventh. The 13th has the same
pitch class as the 6th, so the chord might be labeled C6. In some Jazz manuscripts, a chord is
labeled as a C6 or C13 when the melody has the sixth, and it is unclear and certainly optional
whether the sixth should be played by piano or guitar, adding further confusion. We believe it
is just as meaningful to label the chord type as C or C7 and then provide a set of pitches used
(which indicate whether the fifth, ninth, eleventh, and thirteenth are included). The basic chord
type indicates the chord function (major, dominant, etc.) and the pitch set gives details of how
the chord function is realized.

6.4 Algorithm
Our main work was to integrate an algorithm from Temperley [20] into our overall analysis
system. Temperley’s algorithm is described here. In his algorithm, there are several rules:

1. Pitch Variance Rule: Try to label nearby pitches so that they are close together on the line
of fifths.

2. Compatibility Rule: In choosing roots for chord spans, prefer certain TPC(Tonal Pitch
Class)-root relationships over others. Prefer them in the following order: 1, 5, 3, b3, b7,
ornamental. (An ornamental relationship is any relationship besides these five.)

3. Strong-Beat Rule: Prefer chord spans that start on strong beats of the meter.
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4. Harmonic Variance Rule: Prefer roots that are close to the roots of nearby segments on the
line of fifths.

5. Ornamental Dissonance Rule: An event is an ornamental dissonance if it does not have a
chord-tone relationship to the chosen root. Prefer ornamental dissonances that are closely
followed by an event a step or half-step away in pitch height.

However, in Temperley’s algorithm, there is no type information. For example, the output
will be “A” to indicate the “A chord”. But we do not know it is “A minor” or “A Major” or even
“A diminished”. Thus, in our work, we provide a simple algorithm to predict the type of chord
based on the output of Temperley’s algorithm and the MIDI file, which is discussed as following
steps:

1. In Temperley’s output, the timestamp for each chord is given. The starting time (in mil-
liseconds) and finishing time of each chord can be calculated based on that.

2. Given the starting and finishing time, we can get the notes in the corresponding MIDI file.
Given the notes, we can get the pitch class set (each element is an integer from 0 to 11).

3. Based on the chord root and pitch class set, the chord type will be determined. For example,
if the third ((root + 4) % 12) and fifth ((root + 7) % 12) exist, and the seventh does not, the
chord type will be assigned as “Major”.

6.4.1 Optimization: Subtracting Melody

For music expression, the melody often contains dissonant notes. Because we have a good
melody classifier in Chapter 4, we propose an optimization method, which is to subtract the notes
in the melody channel before we apply the chord analysis algorithm. By eliminating dissonant
non-chord tones of the melody, we hope to improve the ability to find the correct chord label.

6.5 Evaluation

6.5.1 Evaluation Criterion

In our work, we evaluate the correctness of output by four methods:
1. For each 24th beat, we assign 1 point to it when the corresponding predicted and labeled

chords (both root and type) match.

2. For each 24th beat, we assign 1 point when the corresponding predicted and labeled chord
roots match.

3. For each chord, we give it 1 point in total, so if there are N 24th beats, each 24th beat gets
1/N points if the predicted chord matches with label (both root and type).

4. The fourth method is like the third, we only give credit when the chord roots match.
Because for each song, the number of chords is different, instead of showing the value of

points, we show a percentage value, which is calculated from the assigned point value divided
by the number of total potential points.
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6.5.2 Result and Analysis
Table 6.5.2 shows the result of Temperley’s algorithm. For different music, the accuracy varies
a lot. The songs named SanFrancisco and lovelyrose has high accuracy with over 90% for each
evaluation. However, the song named lovestory has an accuracy lower than 60% for each evalu-
ation.

The gap between Eval1 and Eval2 (or Eval3 and Eval4) shows that some errors are introduced
by the type prediction instead of root prediction. In some songs, for example, “california”, “love-
lyrose”, “SanFrancisco”, the gap is very small. However, for some of them such as “autumn”,
the gap is over 10%.

Table 6.2: Chord Test Result without Optimization
Music name Eval1 Eval2 Eval3 Eval4

0adaf64db7fad3f972b4c4b4a7fb77bf 68.21% 74.67% 69.27% 76.01%
alimountain 85.20% 91.37% 80.36% 87.36%
areyouhappy 70.08% 75.71% 70.86% 77.12%

autumn 59.59% 74.64% 59.29% 72.13%
Being 79.97% 87.43% 76.90% 84.72%

california 90.87% 90.87% 91.56% 91.56%
dontwantanything 78.52% 80.59% 75.68% 78.40%

Heaven 85.87% 89.00% 83.35% 87.25%
lovelyrose 91.50% 91.50% 92.99% 92.99%
lovestory 49.53% 53.83% 50.35% 55.72%

mayflower 78.41% 84.75% 78.36% 86.93%
moonwish 86.00% 86.00% 85.66% 85.66%
onmyown 82.56% 83.12% 80.85% 81.09%
riverside 74.73% 74.73% 77.51% 77.51%

SanFrancisco 91.96% 91.96% 91.47% 91.47%
SayYouSayMe 70.12% 76.48% 69.85% 75.31%

skyoftaipei 71.33% 74.95% 66.75% 74.15%
smalltown 82.80% 89.36% 84.84% 90.31%
tenderness 84.74% 86.89% 83.43% 85.69%

Venus 87.35% 90.31% 90.17% 93.82%
Total mean 78.47% 82.41% 77.98% 82.26%
Total std 10.78% 9.16% 10.86% 8.98%

Table 6.5.2 shows the results that with the optimization. For each evaluation, the total mean
value of accuracy shown an increase of 1.3%

6.6 Conclusion
In this chapter, we described a pop music dataset with thousands of chord labels and we tested
the algorithm for chord analysis using this dataset. We also showed that Temperley’s algorithm
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Table 6.3: Chord Test Result with Optimization
Music name Eval1 Eval2 Eval3 Eval4

0adaf64db7fad3f972b4c4b4a7fb77bf 69.54% 75.64% 69.93% 75.90%
alimountain 79.06% 84.74% 71.78% 77.82%
areyouhappy 68.28% 75.86% 69.81% 77.10%

autumn 64.61% 78.93% 65.90% 78.54%
Being 79.97% 87.32% 77.43% 85.23%

california 92.13% 92.13% 92.84% 92.84%
dontwantanything 81.30% 83.36% 79.08% 81.80%

Heaven 87.86% 91.18% 85.87% 90.38%
lovelyrose 91.50% 91.50% 93.11% 93.11%
lovestory 53.13% 57.42% 54.10% 59.54%

mayflower 77.42% 84.78% 77.55% 86.73%
moonwish 95.28% 95.28% 93.92% 93.92%
onmyown 83.04% 83.60% 81.83% 82.06%
riverside 78.43% 78.43% 80.55% 80.55%

SanFrancisco 93.86% 93.86% 93.82% 93.82%
SayYouSayMe 73.64% 80.57% 72.66% 78.72%

skyoftaipei 68.80% 71.75% 64.15% 69.64%
smalltown 86.33% 93.58% 89.35% 94.95%
tenderness 85.02% 86.24% 83.69% 84.97%

Venus 87.35% 90.31% 90.17% 93.82%
Total mean 79.83% 83.82% 79.38% 83.57%
Total std 10.67% 8.97% 10.99% 9.09%

can be at least slightly improved by using our automated melody identification to remove the
melody from the music before performing chord analysis.
The system and experiments in this chapter contribute a number of things to the field of chord
analysis by computer. It is easy to extend the work based on this work. The performance of
the system is measured using some clear evaluation methods, providing an empirical baseline
against which future work may be measured. We also believe the automated chord labeling is
good enough as the first step in bootstrap learning, which would allow us to label a much larger
database of music using more advanced statistical machine leanring methods.
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Chapter 7

Structure Analysis

7.1 Introduction
It is obvious that music has structure. When we talk about a music, it is natural to have ideas
such as “This piece’s structure is AABA”. For humans it is not very hard to detect structure
by listening or analysing music notation, which could be either common practice music or a
graphical representation. And for the task of music generation, the high level structure are usually
produced by random number generator or manually assigned table. In this thesis, we will present
a method that to analyze the structure information automatically from MIDI files and output the
“AABA” information in the form that was introduced by Chapter 3.

7.2 Algorithm
The structure analysis algorithm can be divided into three parts: 1) calculation of a similarity
matrix; 2) repetition section detection; 3) representation transformation.

7.2.1 Similarity Matrix
Similar with the work in audio music structure analysis as Klapuri et al. [10], we define a Frame
to be all of the notes in a certain time duration. For example, in our work, the time interval is set
to 200 milliseconds, which means all of the notes that overlap this time interval will be consid-
ered in the frame.

Similarity Matrix The similarity matrix Si,j means the similarity value of Framei and
Framej . Different similarity functions are possible. In this thesis, we test two categories of
formulas to calculate similarity values. The inputs of the calculation are two frames and the out-
put is a real number to represent how similar they are.

Maximum Sharing Rate In the Maximum Sharing Rate calculation method, Ci,j is the num-
ber of common pitches. Ti,j is the minimum of the number of pitches in Framei or Framej . Or
Ti,j = min(|Framei|, |Framej|), where |Frame| means the number of pitches in the frame.

31



Figure 7.1 is the similarity matrix of Alimountain in metric of Maximum Sharing Rate.

Figure 7.1: Maximum Sharing Rate Similarity Matrix for Alimountain

Chroma Vector Another metric that we will test in our thesis is the Chroma Vector. The
chroma vector of one frame represents the pitch classes that are present. Suppose that in one
frame there are C4 (pitch value is 60) and G4 (pitch value is 67) and C5 (pitch value is 72). In
the vector, we have 12 slots represent the pitch classes from 0 to 11. The pitch class of the frame
that we have is 0, 7 and 0. So the chroma vector for this frame is [2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0]/
√

5. The counts are divided by
√

5 to normalize the length to 1. The similarity value is the dot
product of two chromatic vectors. The meaning of this calculation is that it considers the higher
the dot product of two vector, the more similar they are. Figure 7.2 is the similarity matrix of
Alimountain in metric of chroma vector.

7.2.2 Repetition Detection

When the similarity matrix is ready, we have the texture of the music. The next step is to detect
the repetition fragment from the similarity matrix. It is easy to detect that for the repetition part,
there is a long white line. So the repetition detection task is reduced to find the off-diagonal
“long white lines” in the picture of similarity matrix.

In our algorithm, we rotate the original similarity matrix picture by 45 degrees, from the
square matrix to a diamond matrix. The reason is that in the diamond matrix, each pixel on the
same white lines have nearly equal y-coordinate, which is more convenient for computer vision
algorithms. Here, by the rule of Occam’s Razor, we apply a very simple algorithm to solve this
problem. Before introducing our algorithm, we will first present our consideration and intuition.

We can observe from the picture that there are some points that are very white (the frame
here is very similar) and some points that are grey (the frames here is not very similar). In music,
there are many small variation even the they share the same structure. The white-grey patterns
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Figure 7.2: Chroma Vector Similarity Matrix for Alimountain

are very common and reasonable. Based on this observation and our intuition, we design an
energy based algorithm and clustering method to detect the lines.

Energy Based Algorithm
Here we define the energy to be a real number from 0 to 255. And for convenience, we project
the similarity value to a range of [0, 256). For a repetition structure in music, it usually has the
same beginning and different variation. With this consideration, we design the starting thresh-
old, which means the potential line will start when the similarity value is over a certain value,
and we refill the energy to the maximum value. In our algorithm, we manually set it as 200. Then
we scan the line from left to right, starting from the starting point. When we scan to a grey block
(0 < value ≤ 254), the energy will linearly decay by a factor based on how white the block is.
And when we scan to a completely dark block (value = 0), the energy will exponentially decay
by a decay factor. Algorithm 4 presents this in detail.

Line Clustering
Through the Energy Based Algorithm, we can get a number of short lines. In the Line Clustering
step, we will form the short lines into a long line to represent the repetition part. In detail, first
we build a graph: each node represent one line, and the edge connects two nodes that are near
enough and have some overlap. Here, the definition of near is that the absolute difference of two
y-coordinates is less than a threshold, which is 15 in our work. And the overlap means that two
lines share a common interval on the x-axis.

7.2.3 Representation Transformation
As described in Chapter 3, the output of our system for structure analysis is a list where each
element has the form of “measure”, “duration” and “section”. In this subsection we will introduce
an algorithm to transform the similarity matrix “picture” into the structure representation.

1. Since the picture is symmetric around the diagonal line from upper left to lower right, we
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Result: For each block, determine the energy value.
N is the number of rows in the diamond picture;
C is the number of columns in the diamond picture;
Indexi,j is the left most x-coordinate of the line bypass (i,j);
Counti,j is the number of points in the line bypass (i,j);
DARK=0;
START THRESHOLD=200;
line index = 0;
for i in [0 . . . N) do

last index = 0;
last energy = 0;
cnt = 0;
for j in [0 . . . C) do

data = diamond[i,j];
if data ≥ START THRESHOLD then

if last index==0 then
line index += 1;
cnt += 1;
last index = line index;
last energy = MAX ENERGY;

end
end
if data ≤ DARK then

last energy = exp decay(last energy, data);
end
else

last energy = linear decay(last energy, data);
end
if last energy < FINISH THRESHOLD then

last index = 0;
last energy = 0;
cnt = 0;

end
else

cnt += 1;
end
Indexi,j = last index;

end
end

Algorithm 4: Energy Based Algorithm

will only consider the lower left triangle in the picture.
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2. The red line in the picture with coordinate of (x1, x2, y1, y2) will be transformed as two
segments of (x1, y1) and (x2, y2), which means that music from the time of x1 to y1 is
similar with that from the time of x2 to y2.

3. We build an abstract graph based on segments. For each segment, we assign a node of it.
For each pair of (x1, y1) and (x2, y2) generated from picture, we connect them by an edge.
And for each segment pair (a, b) and (c, d), if their overlap is over a threshold (60% in our
system), we connect those two nodes by an edge.

4. Then we assign each connected group a color (or a unique group number) to indicate the
section number.

5. Sort the line segments increasingly with the key of the first coordinate (x1 if the line is (x1,
y1)). In the final output, we quantize the start time and duration to units of measures and
truncate the tail of section if it overlaps with the next one.

7.3 Evaluation
Figure 7.3 shows the result after the Energy Based Algorithm, the lines that meet our requirement
are colored. In our work, we want to detect the most general structure information. It is easy
to observe that in one piece of music, there are many small repetitions. To filter out the small
repetitions, we set a threshold of the length of our lines. So we require that the repetition line
should be at least 1

10
of the total length of the original music. The result after the filtering and

the clustering algorithm can be found in Figure 7.4. We can find that the general structure for
Alimountain is ABBABB or AA in a more high level view.

Figure 7.3: After the Energy Based Algorithm for Alimountain

The final output of Alimountain is shown in Table 7.3. The output shows that the structure
for the song is BACA, where A’s are measures #3 to #47 and measures #55 to #99. When we
check the music, we find out that it predicts the main part correctly. However, there is no B or C
section in the music. We notice that there is a tempo change around measure #5 from 76 beats
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Figure 7.4: After the Filter and Cluster Algorithm for Alimountain

per minutes to 101 beats per minutes. This explains why our algorithm detects there is a separate
section before A.

Table 7.1: Final Output of Alimountain
m d s
0 2 2
2 45 1

47 7 3
54 45 1

7.3.1 Evaluation Method for Structure Analysis
Given a reference and an analysis result, we want to evaluate the degree to which the result
matches the reference. So in this section we describe such an evaluation method.

Figure 7.5 shows the reference and analysis result for Alimountain. For example, in the
reference, the structure category A has two segments: one is measures #1 to #52; another is
measures #53 to #101. In the analysis result, there are four different categories. Category A has
two segments: one is measures #3 to #47; another is measures #55 to #99. Category B has one
segment: measures #1 to #2. Category C and D also has one segment for each: measures #48 to
#54 for C and measures #99 to #101.

In structure analysis, the same structure can have different names. For example, a structure
ABAB is as same as structure BABA. So finding a quantitative evaluation can be reduced to a
matching in a bipartite graph as follows:

1. We form categories in the reference as the left part in the bipartite graph, and categories in
the analysis result as the right part in the bipartite graph.
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Figure 7.5: Reference and Analysis Result of Alimountain

2. We connect each node in the left part to each node in the right part with a weighted edge.
The weight of the edge between X and Y is the overlap score of category X and Y.

3. Overlap scores are calculated as follows: Category X has segments x1, x2, ..., xn. Category
Y has segments y1, y2, ..., ym. Let Xscorei be the maximum overlap between xi and any
one of segments yj . Xsum is the summation of Xscorei. Similarly, let Y scorei be the
maximum overlap between yi and any one of segments xj . Ysum is the summation of
Y scorei. The overlap score is the minimum of Xsum and Ysum.

4. Now we have a weighted bipartite graph. We use the Kuhn-Munkres algorithm to calcu-
late the matching with the maximum weight. The score is the sum of the weights in the
matching.

The evaluation score for Alimountain is shown in the lower left on Figure 7.5. In this chapter
we analyze 10 songs in total, and the evaluation scores are shown in Table 7.3.1

We also put the results for Moonwish (high evaluation score) and Yesterday (low evaluation
score) in Figure 7.6 and Figure 7.7. For Yesterday, the reference structure is AABB. Comparing
this to the analysis result, we can see that the repetition of A is detected but has some error in
the beginning, and the repetition of B is not detected. As expected, this analysis received a low
score. For Moonwish, it is easy to tell from the picture that the analysis result and the reference
are nearly the same. Both are clearly AABA and the result receives a high score.

7.4 Conclusion
In this thesis we demonstrated that by utilizing the similarity matrix, a very simple algorithm has
the potential to extract the high-level structure information from music given MIDI file. Structure
analysis has many applications such as finding the chorus section, producing audio “thumbnails”
by eliminating repetition, and making music search faster by reducing long files to main themes.
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Table 7.2: Evaluation scores for 10 songs
Song Name Evaluation Score
Alimountain 89.11%

Being 90.99%
california 50.00%
Heaven 78.79%

Lovelyrose 70.00%
Mayflower 60.82%
Moonwish 97.22%
Onmyown 66.67%

SanFrancisco 81.58%
Yesterday 65.48%

Figure 7.6: Reference and Analysis Result of Yesterday

Current music generation schemes based on sequence learning are not able to learn and generate
typical music structures such as a 32-bar AABA form. Automatic structure analysis might be
used in future music generation systems to create more typical song forms.
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Figure 7.7: Reference and Analysis Result of Moonwish
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Chapter 8

Future Work

8.1 Future Work on Melody
We believe further improvements could be made by studying failures. With bootstrapping tech-
niques, it might be possible to obtain much more training data and learn note-by-note melody
identification, which would solve the problem of melodic phrases split across two or more chan-
nels. Our current dataset is relatively small, so collecting a larger dataset could be beneficial for
tuning this algorithm and developing others. With larger datasets, deep learning and other tech-
niques might be enabled. Perhaps bootstrapping (or semi-supervised learning) techniques could
be used starting with the present algorithm to label a larger dataset automatically. We also believe
that music structure can play an important role in melody identification. Melodies are likely to
be longer sequences that are repeated and/or transposed, and these non-local properties might
help to distinguish “true” melodies as perceived by human listeners, even when the melodies are
not particularly “melodic” in terms of local features.

8.2 Future Work on Chord
In our thesis we adopted Temperley’s rule-based algorithm for chord analysis. If we had more
labels, it would be promising to invent new data-driven algorithms for this task. Similar with
melody, we believe that it is useful to use this algorithm as the bootstrap algorithm to label more
data. Another potential direction is to render the music from MIDI and then utilize an audio
model as a source of ensemble learning to raise the performance.

8.3 Future Work on Structure
Currently, the structure analysis is focused on very high level abstraction. There are potential
details that are meaningful at the phrase level or motif level, which will enrich the music rep-
resentation. These lower level and hierarchical structure details might be useful as the input to
a music generation system. The similarity matrix algorithm has the time complexity of O(N2)
where N is the number of 24th beats in the entire piece. When the MIDI music is very long,
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such as more than 20 minutes, this algorithm could be very slow. Thus, an algorithm with better
time complexity might be needed. The use of N-grams might be useful, and there is a substantial
literature in biological sequence matching that might apply to MIDI data.
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