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Abstract	

Musical	ability	determines	how	well	a	musician,	or	a	band,	can	perform.	From	a	

listener’s	perspective,	a	musician’s	ability	is	often	judged	by	the	subjective	overall	impression	of	

the	music.	However,	others,	such	as	teachers	or	talent	seekers,	use	more	specific	criteria	to	

determine	a	musician’s	ability.	Regardless	of	who	is	evaluating,	judgements	of	musical	ability	

are	still	subjective	and	require	the	judges	to	listen	to	recordings	or	live	performances	of	the	

musicians	in	question.	Automatic	estimation	techniques	would	greatly	decrease	the	time	

required	to	determine	a	musician’s	ability.	Automatically	estimating	a	musician’s	ability	would	

also	be	very	useful	for	online	communities	of	musicians	to	help	users	find	other	users	with	a	

similar	musical	talent.	

In	this	thesis,	the	automatic	estimation	of	musical	ability	is	explored.	More	specifically,	

two	features,	both	based	on	the	concept	of	entropy,	are	proposed.		The	first	feature	looks	at	

the	rhythmic	consistency	of	a	recording,	while	the	second	looks	at	the	tonal	consistency.	The	

performance	and	relative	importance	of	each	feature	is	studied	by	correlating	the	results	of	the	

feature	with	data	that	was	manually	labelled	by	12	musicians.	Using	the	rhythmic	feature,	a	

Pearson’s	correlation	coefficient	of	-0.55	with	a	p-value	of	0.00052	was	found,	whereas	the	

pitch	feature	had	a	coefficient	of	-0.32	and	a	p-value	of	0.056.	
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1. Introduction	

Musical	ability	is	defined	as	how	well	a	musician	can	play	their	instrument.		Is	a	musician	

able	to	play	rhythmically	on	tempo	with	a	band?		Can	that	same	musician	sing	a	note	in	key?		

Musical	ability	is	also	commonly	used	to	describe	how	well	a	musician	can	emotionally	express	

themselves	during	a	performance.		However,	we	do	not	have	a	clear	definition	of	ability.	For	

example,	if	a	listener	greatly	enjoys	a	musical	performance	for	whatever	reason,	they	might	

rate	musical	ability	as	high.	

How	musical	ability	is	defined	can	also	change	drastically	between	genres.		A	musician	

can	perform	with	a	very	high	ability	for	one	genre,	but	have	a	beginner’s	level	performance	for	

a	second	genre.		Therefore,	evaluating	the	musical	ability	of	a	musician	across	genres	is	a	

difficult	task.		This	thesis	focuses	on	just	western	rock	and	pop	music	to	simplify	the	process.	

We	also	assume	that	we	are	analyzing	polyphonic	recordings.	

Automatically	recognizing	musical	ability	is	gaining	importance	for	online	communities	

of	musicians	as	a	tool	for	discovery.	Previous	works	have	shown	that	the	best	collaborations	

happen	when	the	collaborators	believe	that	they	all	have	a	similar	skill	level	[1].	A	study	by	

Katira	et	al	[2]	looked	at	pairs	of	software	developer	students	and	attempted	to	predict	their	

compatibility	based	on	different	attributes.	They	found	that	perceived	skill	level	predicted	a	

good	match	for	all	levels	of	developers	while	actual	skill	level	predicted	a	good	match	for	

graduate	level	students.	



2	
		

There	have	recently	been	many	communities	created,	such	as	Kompoz	or	Splice	[3,	4],	

for	musicians	to	find	collaborators	with	whom	to	write	or	record	songs.	These	communities	rely	

on	users	manually	sorting	through	listings	of	thousands	of	collaboration	partners.	Assuming	

that	ability	is	a	good	way	to	find	good	collaborators,	these	online	communities	could	help	users	

by	rating	their	abilities	and	suggesting	collaborators	with	similar	ability,	interests,	tastes,	etc.	

Additionally,	automatic	recognition	of	musical	ability	can	be	used	by	the	music	industry	

to	discover	new	talent.		Record	labels	could	sort	music	on	sites	such	as	SoundCloud	by	their	

musical	ability	to	help	them	find	musicians	that	they	would	like	to	sign.	Additionally,	

applications	such	as	Spotify	or	iTunes	could	use	this	to	recommend	the	better	performed	songs	

to	their	users.	

In	this	thesis,	the	problem	of	ranking	musical	performances	based	on	their	rhythmic	and	

tonal	entropy	is	addressed.	More	specifically,	this	thesis	discusses	entropy,	and	defines	how	it	is	

used.	It	will	then	suggest	two	new	features,	one	based	on	the	rhythmic	entropy	and	the	other	

based	on	the	tonal	entropy,	which	can	be	used	to	find	the	musical	ability	of	the	musicians	in	an	

audio	recording.	

The	organization	of	the	rest	of	this	thesis	is	as	follows.	Section	2	presents	the	related	work.	

In	Section	3,	entropy	will	be	defined	and	discussed.	Sections	4	and	5	define	the	rhythmic	and	

tonal	features	used	to	find	the	musical	ability.	Section	6	will	detail	the	evaluation	of	the	new	

features.	Finally,	section	7	will	conclude	the	thesis	and	present	possible	future	work.	
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2. Related	Work	

	 The	ability	to	measure	the	musical	ability	of	a	musician	is	not	a	new	concept.	One	

branch	of	research	has	attempted	to	draw	upon	the	psychology	of	music	to	test	musical	ability.	

Other	research	has	tried	to	measure	musical	ability	by	having	the	musician	play	along	with	a	

specific	score.	However,	no	work	has	attempted	to	automatically	determine	the	musical	ability	

of	the	musicians	in	an	arbitrary	song.	

	 Studies	of	musical	ability	reach	back	to	at	least	the	early	1900’s	where	Mursell	showed	

that	there	was	not	yet	a	satisfactory	test	for	musical	ability	[5].	Over	the	next	few	decades,	

profiles	published	by	Seashore	[6],	Gordon	[7],	and	others	[8,	9]	found	some	indication	of	

musical	ability	based	on	various	measures,	such	as	interval	and	rhythm	recognition.		However,	

all	studies	are	based	on	having	the	subject	self-report	or	take	a	proctored	test.	Whereas	the	

means	of	extracting	information	is	different,	this	thesis	attempts	to	measure	a	similar	set	of	

abilities.	

	 Another	area	that	has	studied	musical	ability	is	score	following.	Score	following	

attempts	to	map	a	musical	performance	of	a	song	to	a	symbolic	representation	of	the	song.	The	

Piano	Tutor	used	score	following	to	help	train	beginner	piano	students	[10].	Students	

performed	on	a	MIDI	keyboard	and	the	Piano	Tutor	would	output	errors	such	as	bad	timing	or	

wrong	notes.	Smart	Music	[11]	is	a	similar	system;	however	it	evaluates	performances	on	wind	

and	string	instruments	using	pitch	estimation	techniques.	Music	Prodigy	[12]	and	Yousician	[13]	

are	two	other	music	learning	systems	which	include	the	ability	to	evaluate	multiple	pitch	

instruments,	such	as	guitar.	
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	 Over	the	last	couple	of	decades,	some	video	games,	often	called	rhythm	games,	let	

users	play	along	with	popular	songs.	Some	of	these	games	use	guitar-like	instruments	and	

electric	drums	as	input,	such	as	Rock	Band	and	Guitar	Hero.	Rocksmith	bridges	the	gap	between	

video	games	and	music	education	systems	by	letting	musicians	play	along	on	any	electric	guitar,	

and	provide	both	a	video	game	experience	and	exercises	to	help	train	the	guitarists	[14].	These	

rhythm	games	award	scores	based	on	timing	errors	on	wrong	notes.	

	 All	of	these	systems	that	measure	musical	ability	use	score	following	or	playing	along	

with	fixed	media.	They	do	not	work	when	a	score	is	unavailable.	With	western	rock	music,	

songs	are	often	learned	without	scores	and	sometimes	sections	are	entirely	improvised.	In	this	

situation,	we	could	attempt	to	transcribe	the	recording	and	determine	the	musical	ability	based	

on	the	resulting	score.	However,	this	is	a	very	difficult	problem	[15,	16]	as	it	involves	figuring	

out	what	instruments	are	contained	in	the	piece,	then	source	separation	of	the	instruments	

involved,	both	of	which	are	difficult	problems	on	their	own.	Furthermore,	there	may	be	no	way	

to	detect	mistakes	since	we	have	no	“ground	truth”	that	tells	what	the	musician	was	intending	

to	play.	
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3. Entropy	

To	determine	the	musical	ability	of	a	recording	without	a	score,	we	can	instead	look	at	

methods	that	estimate	pitch	and	rhythm	accuracy.	If	we	assume	a	recording	has	only	notes	

played	perfectly	in	tune,	the	resulting	spectrogram	would	contain	peaks	at	the	frequencies	in	

that	song’s	scale	and	valleys	elsewhere.	This	means	that	a	well-played	song,	in	terms	of	pitch,	is	

missing	the	“out	of	tune”	frequencies.	Similarly,	a	song	that	has	very	consistent	rhythms	would	

have	a	consistent	periodicity	between	the	onsets.	This	could	be	determined	using	a	beat	

histogram,	which	is	an	audio	feature	often	used	for	determining	rhythmic	similarity.	This	would	

mean	that	a	perfect	song	in	a	rhythmic	sense	would	only	have	timing	intervals	that	match	the	

tempo	and	the	meter	of	the	song.	

To	allow	us	to	use	the	frequency	spectrogram	and	beat	histogram	to	measure	pitch	and	

rhythm	as	measures	of	musical	ability,	we	require	a	method	to	extract	the	consistency.	To	

explore	this	concept	further,	we	will	describe	the	concept	of	entropy,	which	plays	an	important	

part	in	our	work.	

In	general,	the	concept	of	entropy	has	been	used	by	physicists	to	define	the	amount	of	

energy	lost	in	reactions.	More	specifically,	the	second	law	of	thermodynamics	states	that	the	

amount	of	entropy	in	any	isolated	system	will	increase	[17].	The	use	of	entropy	has	also	been	

adopted	by	other	fields	to	describe	similar	concepts.		For	example,	information	theory	defines	

entropy	as	the	loss	of	data	in	information	transmission	systems	[18].	

	 Entropy	has	also	been	adapted	for	signal	processing.	Ekstein	and	Pavelka	[19]	proposed	

a	definition	where	a	system	of	maximum	entropy	is	a	system	of	only	noise.	Other	parts	of	the	
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system,	such	as	speech	or	music,	would	have	lower	entropy.	This	is	also	defined	so	that	the	

more	periodic	a	source	is,	the	lower	the	entropy	will	be.	The	entropy	for	a	source	signal	is	

defined	in	Equation	(	3.1	).	

	 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − 𝑥 ∗ log 𝑥  
!

	 (	3.1	)	

	

	 This	version	of	entropy	has	been	used	for	signal	processing	in	algorithms	such	as	

automatic	speech	recognition	(ASR)	[20]	and	in	detecting	vision	impairments	in	EEGs	[21].	In	

this	thesis,	we	will	propose	a	new	usage	of	this	entropy	for	detecting	the	musical	ability	in	a	

recording.	

If	consistency	is	the	hallmark	of	musicianship,	one	might	expect	a	simple	measure	such	as	

standard	deviation	would	be	a	good	estimator.	This	would	be	true	if	we	were	looking	for	

consistent	values	around	a	fixed	mean	value.	However,	even	at	a	steady	tempo,	we	expect	

different	rhythmic	values	clustered	around	common	quantities	such	as	eighth	notes	and	

quarter	notes.	With	pitch,	we	expect	frequencies	determined	by	discrete	scale	steps,	with	few	

frequency	components	in	between.	In	both	cases,	we	are	looking	for	concentrated	clustering	

around	a	relatively	small	set	of	means.	This	is	a	more	general	problem	than	standard	deviation.	

We	could	consider	forming	clusters	and	estimating	the	standard	deviation	of	each	cluster,	but	

entropy	seems	to	be	a	simpler	model	that	accomplishes	much	the	same	thing.	Entropy	is	higher	

when	values	are	clustered,	and	lower	when	values	are	random	and	independent.	 	
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4. Rhythm	

One	of	the	methods	of	estimating	the	musical	ability	in	a	song	is	to	use	rhythmic	

features.		At	a	high	level,	the	idea	is	to	detect	when	the	musicians	are	playing	notes	at	the	same	

time	as	each	other	and	to	use	that	information	to	compute	their	musical	ability.	We	then	

correlate	the	extracted	features	with	the	user	labelled	data	set	to	determine	the	usefulness	of	

the	features.	

To	extract	the	features,	we	first	build	a	beat	histogram,	and	then	compute	the	entropy	

using	the	following	steps:	

1) Detect	Onsets:	We	find	the	onsets	of	the	entire	audio	recording.	

2) Calculate	Onset	Diff	Histogram:	We	subtract	the	timestamp	of	each	onset	with	the	

timestamp	of	its	neighbor	and	store	the	results	in	a	histogram.	

3) Parzen	Smoothing:	We	smooth	the	histogram	using	Parzen	Smoothing.	

4) Calculate	Entropy:	We	calculate	the	entropy	of	the	smoothed	histogram.	

4.1. 	Onset	Detection	
	

	 To	detect	the	onsets,	we	use	an	off-the-shelf	onset	detector,	aubio	[22],	which	“is	a	tool	

designed	for	the	extraction	of	annotations	from	audio	signals”.	We	chose	aubio	since	both	the	

algorithms	it	uses	and	its	APIs	are	well	documented.	aubio	comes	packaged	with	a	command	

line	program	called	“aubioonset”	which	we	ran	on	each	audio	file	with	the	default	settings.	It	

outputs	a	list	of	timestamps,	in	seconds,	for	which	onsets	were	detected.	
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	 aubioonset	has	eight	different	onset	detection	algorithms:	energy	based	difference,	

high-frequency	content,	complex	domain,	phase	based,	spectral	difference,	Kullback-Liebler,	

Modified	Kullback-Liebler,	and	spectral	flux	[23].	We	used	the	default	onset	detection	function	

which	is	high-frequency	content.	High-frequency	content	is	calculated	for	each	frame	by	

linearly	weighting	each	frequency	bin,	and	then	summing	all	of	the	weighted	bins	together	as	

shown	in	(	4.1	)	[24].	aubioonset	also	allows	other	options	for	the	buffer	size,	hop	size,	onset	

threshold	value,	and	silence	threshold	value.	We	decided	to	use	the	default	values	of	512,	256,	

0.1,	and	-90	dB	respectively	for	each	option.	

	
𝐻𝐹𝐶 =  𝑖 ∗ 𝑎𝑏𝑠(𝑋[𝑖])

!"#(!)

!!!

	 (	4.1	)	

	

	 To	find	the	actual	onset	time	from	the	high-frequency	content,	aubio	looks	for	the	peaks	

using	a	moving	mean	with	an	adaptive	threshold.	The	peak	picker	tracks	the	mean	of	the	

current	high-frequency	content	value	along	with	the	previous	six	values.	It	then	computes	a	

new	value	with	an	adaptive	threshold	using	(	4.2	).	The	peak	picker	then	compares	the	result	to	

the	values	from	the	previous	two	frames	and	detects	a	peak	is	the	middle	value	is	the	largest	of	

the	three	and	is	greater	than	0.	If	the	volume	of	the	audio	is	then	louder	than	the	silence	

threshold	value,	the	peak	is	declared	an	onset.		

	 𝑝𝑒𝑎𝑘 = 𝐻𝐹𝐶 −𝑚𝑒𝑑𝑖𝑎𝑛 − (𝑚𝑒𝑎𝑛 ∗ 𝑜𝑛𝑠𝑒𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)	 (	4.2	)	
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Figure	4.1:	Position	of	onsets	in	a	performance	of	amateur	musicians	(song	2)	

	

Figure	4.2:	Position	of	onsets	in	a	performance	of	professional	musicians	(song	38)	
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4.2. 	Onset	Diff	Histogram	
	

Given	the	list	of	onset	times,	we	sort	the	list	in	ascending	order,	and	compute	the	

difference	in	time	between	each	adjacent	element	in	the	list.	This	gives	us	a	list	of	timings	

between	onsets.	We	then	organize	the	list	into	a	histogram	to	get	a	count	for	each	onset	timing	

difference.	Code	4.1	presents	Python-like	pseudo	code	that	could	be	used	to	compute	the	

histogram.	

def	compute_onset_diffs_histogram(onsets):	
		diffs	=	[]	
		for	i	in	range(1,	len(onsets)):	
				diffs.append(onsets[i]	–	onsets[i	–	1])	
	
		histogram	=	{}	
	
		for	diff	in	diffs:	
				histogram[diff]	=	(histogram[diff]	||	0)	+	1	
	
		return	histogram	
					
Code	4.1:	The	algorithm	that	creates	a	histogram	of	onset	timing	differences.	

	

We	only	compute	the	difference	against	the	neighboring	onsets	and	not	between	any	

other	onsets	since	the	difference	between	other	onsets	would	just	calculate	information	that	is	

already	present	in	the	neighboring	onset	differences.	Consider	a	perfectly	played	song	that	

contains	just	quarter	notes	and	the	occasional	half	note.	The	onset	diff	histogram	with	just	

neighbors	would	have	a	peak	at	the	quarter	note	value,	and	a	smaller	peak	at	the	half	note	

value.	If	we	also	included	the	difference	between	onsets	two	locations	away,	two	peaks	would	

appear	at	the	values	for	half	notes	and	whole	notes	that	have	the	same	size	as	the	peaks	

current	peaks	for	quarter	notes	and	half	notes.	
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Figure	4.3:	Onset	differences	over	time	for	a	recording	of	amateur	musicians(song	2)	

	

Figure	4.4:	Onset	histogram	for	a	recording	of	amateur	musicians	(song	2)	
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Figure	4.5:	Onset	differences	over	time	for	a	performance	of	professional	musicians	(song	38)	

	

Figure	4.6:	Onset	histogram	for	a	performance	of	professional	musicians	(song	38)	
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4.3. 	Parzen	Smooting	

		
We	then	use	Parzen	smoothing,	which	is	also	known	as	kernel	density	estimation,	to	

estimate	the	probability	density	function.	This	is	done	so	that	we	correct	for	the	statistical	

errors	in	the	observation	of	the	onsets.	Parzen	smoothing	works	by	taking	a	specific	shape	to	

use	as	a	kernel	in	estimating	the	actual	data’s	shape	[25].	We	use	Gaussian	kernels	as	the	

starting	shape	and	use	Scott’s	Rule	[26]	to	detect	the	optimal	bandwidth	of	the	Gaussian	

kernel.	A	Gaussian	shape	was	chosen	for	the	kernel	as	we	assume	that	the	musicians’	mistakes	

are	normally	distributed.	The	bandwidth	of	the	kernel,	or	in	this	case	the	width	of	the	Gaussian	

curve,	is	a	free	parameter	that	has	a	strong	influence	on	the	result	of	the	smoothing.	Scott’s	

Rule	is	a	rule-of-thumb	bandwidth	selector	which	attempts	to	optimize	the	bandwidth	based	on	

the	length	of	the	histogram	[27].	The	equation	for	Scott’s	Rule	is	seen	in	(	4.3	).	

	 𝑆𝑐𝑜𝑡𝑡!𝑠 𝑅𝑢𝑙𝑒:𝑛!! !!!, 𝑛 = 𝑎𝑟𝑟𝑎𝑦 𝑙𝑒𝑛𝑔𝑡ℎ,𝑑 = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠	 (	4.3	)	
	

	 	
	

4.4. Entropy	
	

We	then	compute	the	entropy	of	the	recording.	This	is	done	by	calculating	the	Shannon	

entropy	of	the	smoothed	onset	timing	difference	histogram.	We	use	the	implementation	from	

SciPy	which	calculates	(	3.1	)	[28].	SciPy	uses	the	natural	logarithm	in	the	calculation.	
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Figure	4.7:	Smoothed	histogram	of	a	performance	of	amateur	musicians	(song	2).	The	black	bars	
of	this	graph	represent	the	onset	difference	histogram	while	the	green	line	represents	the	

Parzen	smoothed	probability	density	function.	The	density	function	has	been	vertically	scaled	on	
this	graph	so	that	its	overall	shape	is	easier	to	see.	

	

4.5. 	Discussion	
	

	 As	implemented,	the	rhythmic	feature	makes	some	assumptions.	First,	it	depends	on	

the	detection	of	note	onsets.	This	is	currently	an	area	of	active	research	and	no	algorithms	are	

perfect.	This	means	that	there	will	be	both	false	positives	and	false	negatives	in	our	onsets	

which	will	propagate	error	throughout	the	entire	feature.	Additionally,	we	assume	that	the	

audio	recording	has	a	consistent	rhythm	and	a	steady,	unchanging	tempo.	A	study	of	tempo	in	

rock	and	jazz	recordings	showed	that	recordings	by	professional	performers	(even	without	

using	click	tracks)	have	more	constant	tempi	than	recordings	by	amateur	performers	[29].	
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However,	a	rhythm	or	a	tempo	that	changes	will	introduce	more	entropy,	even	if	the	musicians	

changed	the	rhythm	or	tempo	on	purpose	and	did	so	skillfully.	Finally,	this	algorithm	assumes	

that	the	musicians	are	all	trying	to	play	their	notes	exactly	on	the	beat.	However,	this	is	not	

always	the	case	as	sometimes,	musicians	will	play	either	ahead	or	behind	of	the	beat	to	create	

a	different	feel	in	the	music.	Again,	this	could	be	a	positive	indication	of	musical	ability	rather	

than	a	negative	one.	

	

	

Figure	4.8:	Smoothed	histogram	of	a	performance	by	professional	musicians	(song	38).	The	
black	bars	of	this	graph	represent	the	onset	difference	histogram	while	the	green	line	represents	

the	Parzen	smoothed	probability	density	function.	The	density	function	has	been	vertically	
scaled	on	this	graph	so	that	its	overall	shape	is	easier	to	see.	
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5. Pitch	

	 The	pitch	feature	to	measure	musical	ability	is	based	on	analyzing	the	spectral	content	

of	the	audio.	At	a	high	level,	the	algorithm	looks	for	spectral	smearing	which	indicates	that	the	

musicians	are	playing	out	of	tune	with	each	other.	This	is	done	by	first	calculating	the	loglog	

frequency	spectrum	of	the	recording	and	then	computing	the	entropy	of	the	spectrum.	

	 To	extract	the	pitch	feature,	we	first	split	the	audio	file	into	chunks	of	64,000	samples,	

using	an	overlap	of	50%.	Each	chunk	has	a	Hamming	window	applied	to	it	then	has	the	Fourier	

transform	computed.	Only	the	magnitude	of	each	bin	is	stored.	Each	bin	is	summed	across	

every	chunk,	and	then	averaged	so	that	we	end	up	with	a	single	64,000	bin	frequency	spectrum	

of	the	entire	audio	file.	

	 We	then	transform	the	frequency	spectrum	into	a	loglog	scale.	We	use	decibels	for	the	

magnitude,	and	a	log	base	10	scale	for	the	frequencies.		A	log	scale	was	chosen	for	the	

frequencies	so	that	the	lower	frequencies	have	more	emphasis.	This	is	because	most	melodic	

content	is	present	in	the	lower	frequencies	of	the	audio	spectrum,	whereas	the	higher	

frequencies	contain	more	harmonic	content.	

	 The	entropy	of	the	frequency	spectrum	is	then	computed.	Again,	SciPy’s	

implementation	of	Shannon	entropy	is	used	with	a	natural	logarithm.	

	 The	pitch	feature	described	above	makes	some	assumptions	about	the	how	the	

recording	was	performed.	First,	it	assumes	that	there	is	no	vibrato.	Since	vibrato	rapidly	varies	

the	pitch	of	the	note	by	small	amounts,	any	vibrato	will	add	more	entropy.	Similarly,	if	the	
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overall	pitch	of	the	song	drifts	over	time,	more	entropy	will	be	detected.	Also,	fixed	pitch	

instruments,	such	as	a	MIDI	keyboard,	will	have	less	entropy	than	instruments	without	fixed	

pitch,	such	as	violins.	Finally,	if	the	recording	changes	key	part	way	through,	more	entropy	will	

be	present	as	more	unique	pitches	will	have	been	played.	

	

Figure	5.1:	Frequency	spectrum	for	an	amateur	recording	(song	15)	
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Figure	5.2:	Loglog	frequency	spectrum	for	a	performance	of	amateur	musicians(song	15)	

	

Figure	5.3:	Frequency	spectrum	for	a	performance	of	professional	musicians	(song	22)	
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Figure	5.4:	Loglog	frequency	spectrum	for	a	performance	of	professional	musicians	(song	22)	
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6. Evaluation	

To	evaluate	our	entropy	based	measures,	we	collected	music	and	used	human	subjects	

to	rate	it	for	musical	ability.	

6.1. 	Data	Collection	

	

The	data	for	this	project	consists	of	two	versions	of	twenty	one	different	songs.		One	

version	is	performed	by	an	amateur	band	and	the	other	is	performed	by	a	professional	band.		

The	songs	were	taken	from	YouTube,	and	a	list	of	the	songs	can	be	found	in	Appendix	1.	

Each	song	was	downloaded	from	YouTube	and	was	clipped	to	a	thirty	second	long	file.		

The	thirty	seconds	chosen	for	each	song	were	the	same	for	the	both	the	amateur	and	

professional	categories.		For	example,	if	the	first	chorus	was	chosen	for	the	amateur	version	of	

“Song	A”,	the	first	chorus	would	also	be	chosen	for	the	professional	version	of	“Song	A”.		The	

songs	were	also	all	normalized	in	volume	and	converted	to	the	mp3	format.		All	processing	was	

completed	using	Audacity.	

The	songs	were	then	rated	by	other	members	of	my	research	group.		This	consisted	of	

twelve	users,	and	each	user	rated	a	random	selection	of	twenty	songs,	ten	from	each	of	the	

amateur	and	professional	categories.		Each	rater	first	listened	to	three	sample	songs	which	

were	accompanied	with	suggested	ratings	for	each	sample.		A	list	of	twenty	songs,	from	the	

forty-two	song	set,	was	then	randomly	generated.		Each	rater	was	given	ten	random	amateur	

songs	and	ten	random	professional	songs	in	a	random	order.		The	rating	scheme	used	is	shown	

in	Table	6.1.	
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Table	6.1:	The	rating	scheme	used	by	the	raters	to	evaluate	each	recording.	

Rating	Level	 Rating	Description	

5	 Flawless	performance	

4	 Minor	mistakes	that	do	not	detract	from	the	performance	

3	 Many	mistakes	that	do	not	detract	from	the	performance	

2	 Many	mistakes	that	detract	from	the	performance	

1	 More	mistakes	than	playing;	hard	to	listen	to	

	

The	raters	were	also	to	keep	in	mind	that	the	songs	were	to	be	rated	on	performance	

ability,	and	not	on	production	qualities	such	as	editing,	mastering,	microphone	placements,	

etc.,	which	can	greatly	affect	a	listeners	judgement	of	a	song.		The	musical	ability	was	defined	

as	the	rhythm	and	intonation	of	the	performers,	both	in	their	solo	performance,	and	in	their	

performance	with	other	band	members.		Each	song	was	encoded	as	a	low	bitrate	mp3	to	

attempt	to	adjust	for	the	bias	introduced	by	differences	in	overall	production	quality.	

6.2. 	Data	Processing	

	

Once	the	data	was	collected,	it	had	to	be	preprocessed	to	account	for	a	rater’s	bias.		For	

example,	if	one	rater	was	harsher	(rated	lower)	than	the	rest	of	the	raters,	that	first	rater	will	

have	their	ratings	adjusted	higher	to	match	the	other	rater’s	ratings.		This	was	done	by	

calculating	the	z-score	of	each	rating	based	on	the	standard	deviation	and	average	of	its	rater’s,	

as	shown	in	(	6.1	).	The	overall	average	z-score	of	each	song	was	then	computed.	
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	 𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥 − 𝜇
𝜎 	 (	6.1	)	

	 	
	

6.3. Results	
	

	 To	determine	how	useful	our	rhythm	and	pitch	features	are,	we	found	both	the	rhythm	

and	pitch	entropy	values	for	every	song	in	our	dataset.	A	correlation	value	for	each	feature	was	

calculated	against	the	user	labelled	data.	The	results	of	the	correlations	can	be	seen	in	Table	

6.2.	To	calculate	the	correlations,	we	used	Pearson’s	correlation	coefficient,	a	measure	of	

correlation	between	two	normal	data	sets,	with	two-tailed	p-values	[30].	The	use	of	Pearson’s	

correlation	coefficient	assumes	that	the	musical	ability	of	all	songs	follows	a	normal	

distribution.	More	specifically,	the	majority	of	songs	are	assumed	to	have	an	average	musical	

ability	rating,	while	really	well	performed	songs	and	really	poorly	performed	songs	are	assumed	

to	be	much	rarer.	

Table	6.2:	The	correlation	results	of	the	rhythm	and	pitch	features.	

	 r-value	 p-value	

Rhythm	Entropy	 -0.55	 5.2e-4	

Pitch	Entropy	 -0.32	 0.056	

	

	 Figure	6.1	and	Figure	6.2	plot	each	song’s	rating	versus	its	entropy	value.	As	expected,	

the	professional	performances	tend	to	have	higher	user	ratings	and	lower	entropy	values	while	

the	amateur	performances	tend	to	have	lower	user	ratings	and	high	entropy	values.	However,	

it	is	interesting	to	note	that	not	all	professional	performances	scored	well,	both	by	the	raters	
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and	by	the	entropy	features.	Additionally,	some	amateur	performances	scored	well	by	both	the	

raters	and	the	entropy	features.	

	 To	be	able	to	put	our	entropy	correlations	in	perspective,	we	can	compare	the	

correlations	of	entropy	to	those	of	the	human	raters.	Since	we	consider	the	average	z-score	of	

all	raters	to	be	the	gold	standard,	we	can	compute	the	average	z-score	of	all	but	one	rater	to	

get	an	almost-gold	standard	and	then	evaluate	the	held-out	rater	in	the	same	way	we	evaluate	

entropy,	using	correlation.	We	evaluate	all	raters	by	holding	out	one	at	a	time	and	recomputing	

the	“almost-gold	standard”	each	time.	We	then	compute	an	overall	average	correlation	as	well	

as	the	standard	deviation.	This	then	estimates	the	expected	correlation	of	any	human	rater,	

which	we	can	then	compare	to	the	entropy	correlations.	

The	results	of	this	inter-user	evaluation	can	be	seen	in	Table	6.3.	The	rhythm	entropy	

correlates	well	within	one	standard	deviation	of	the	human	raters	(0.05	difference	in	

correlation)	while	the	pitch	entropy	correlation	is	almost	one	standard	deviation	below	the	

average	human	raters	(-0.18	difference).	This	suggests	that	our	rhythm	entropy	feature	is	as	

efficient	as	an	average	human	rater,	while	the	pitch	entropy	feature	performs	worse	than	an	

average	human	rater.	

Table	6.3:	The	average	and	standard	deviation	of	the	correlation	of	each	human	rater	

Average	Correlation	 Standard	Deviation	

0.50	 0.21	
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Figure	6.1:	Amateur	and	professional	rhythm	entropies	vs.	ratings	

	

Figure	6.2:	Amateur	and	professional	pitch	entropies	vs.	ratings	
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6.4. Parzen	Smoothing	
	

After	conducting	this	study	with	Parzen	smoothing,	we	also	tried	computing	the	rhythm	

entropy	without	Parzen	smoothing.	Intuitively,	the	current	width	of	the	Gaussian	kernels	is	too	

wide.	An	example	of	this	can	be	seen	in	Figure	4.7,	where	there	are	four	distinct	peaks	in	the	

underlying	histogram	data	at	0.2s,	0.4s,	0.6s,	and	0.8s.	However,	the	Parzen	smoothed	curve	

barely	distinguishes	between	these	peaks.	One	might	think	that	that	either	reducing	the	width	

of	the	kernels,	or	removing	the	Parzen	smoothing	altogether	will	improve	the	rhythm	entropy	

results.	

However,	the	results	without	Parzen	smoothing	seem	to	be	significantly	worse,	with	the	

rhythm	entropy	having	an	r-value	of	-0.14.	This	is	counterintuitive	and	deserves	further	

exploration.	Unfortunately,	there	are	methodological	problems	to	this	pursuit.	If	we	were	to	

compute	the	p-value	as	before,	it	would	be	0.41,	which	would	not	indicate	a	significant	

correlation.		Unfortunately,	we	cannot	make	this	conclusion	because	this	would	be	an	incorrect	

way	to	compute	the	p-value.	That	is	because	if	we	reuse	the	relatively	small	set	of	subjective	

ratings	with	different	parameters	(such	as	Parzen	smoothing	kernels),	the	probability	of	finding	

a	high	correlation	is	increased.	(This	is	a	form	of	overfitting	the	data.)	The	question	of	

significance	changes	from	“is	the	probability	of	the	null	hypothesis	low”	to	“is	the	probability	of	

many	related	null	hypotheses	low.”	Ignoring	this	distinction	leads	to	greater	significance	than	

warranted	by	the	data.	The	best	approach	would	be	to	gather	new	data	to	evaluate	new	

techniques.	Lacking	more	data,	we	cannot	evaluate	different	Parzen	smoothing	parameters,	so	

we	leave	open	the	question	of	whether	our	approach	is	best.		
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7. Conclusions	and	Future	Work	

7.1. Conclusions	
	

	 This	thesis	has	introduced	two	new	features,	one	based	on	rhythm	and	the	other	based	

on	pitch,	to	determine	the	musical	ability	of	the	musicians	in	a	recording.	The	features	both	

take	in	an	audio	recording	as	an	input	and	both	output	a	scalar	entropy	value.	The	features	

were	correlated	against	user-labelled	data	to	determine	how	useful	each	feature	was.	The	

results	of	the	evaluation	show	that	the	two	features	have	potential	to	be	used	as	indicators	of	

musical	ability	in	musicians.	In	particular,	rhythmic	entropy	had	a	very	high	correlation	with	

subjective	ratings	(r	=	-0.59,	p	=	0.00015).	Pitch	entropy	appears	to	be	correlated	(r	=	-0.32)	but	

the	correlation	was	not	significant	in	this	study	(p	=	0.056).	

7.2. 	Future	Rhythm	Entropy	Work	
	

	 There	is	much	future	work	that	could	be	done	to	enhance	both	of	the	features.	One	

such	improvement	would	be	to	not	penalize	recordings	that	contain	intentional	rhythmic	or	

tempo	changes.	It	would	be	interesting	to	look	into	detecting	when	these	changes	happen	and	

then	to	determine	the	best	way	to	correct	for	these	changes.	This	could	possibly	be	done	by	

computing	the	entropy	for	each	distinct	section	on	its	own	and	then	combing	the	resulting	

entropy	values.	

	 Another	area	that	could	use	more	research	is	detecting	when	a	musician	is	playing	

ahead	of	or	behind	the	beat.	We	can	speculate	that	a	musician	playing	perfectly	off	beat	will	

produce	a	smoothed	beat	histogram	that	has	consistently	wider	peaks,	due	to	one	onset	always	
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being	slightly	delayed	from	its	neighbor.	However,	more	work	is	required	to	determine	the	best	

way	to	correct	for	this	behavior.	However,	if	the	tempo	changes	happened	for	non-musical	

reasons,	this	approach	might	lead	to	false	positives.	Automatic	evaluation	of	high-level	musical	

decisions	(or	accidents)	seems	to	be	very	challenging.	

	 In	the	rhythm	feature,	we	treated	all	timing	errors	as	absolute	values,	meaning	that	

missing	a	quarter	note	by	100ms	would	penalize	the	musical	ability	the	same	amount	that	

missing	an	eighth	note	by	100ms	would.	However,	this	is	not	necessarily	the	case	and	both	the	

production	and	the	perception	of	timing	errors	may	be	relative.	Future	work	should	be	done	to	

consider	how	logs	of	the	inter-onset	times	would	perform	rather	than	the	absolute	inter-onset	

times.	

7.3. Future	Pitch	Entropy	Work	
	

	 There	is	also	room	for	future	work	on	the	pitch	feature.	One	such	area	is	not	penalizing	

recordings	for	changing	the	key	part	way	through	a	recording.	Similar	to	tempo	changes,	this	

could	possibly	be	solved	by	detecting	key	changes	and	then	computing	an	entropy	value	for	

each	section	individually.	However,	more	research	would	have	to	be	done	to	determine	the	

best	method	for	doing	so.	

	 Finally,	more	work	needs	to	be	done	to	allow	the	addition	of	vibrato	in	the	recordings.	

Whereas	vibrato	adds	smearing	to	the	frequency	spectrum,	a	good	vibrato	would	have	a	

consistent	smearing	pattern	in	the	spectrum.		More	work	could	be	done	to	determine	how	to	

best	handle	the	vibrato.	
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7.4. Future	New	Features	
	

We	have	also	thought	about	other	features	that	could	be	used	to	detect	the	musical	

ability.	Tone	production	is	a	large	area	of	musicianship	that	we	have	ignored.	A	note	can	be	

played	perfectly	in	time	and	on	pitch	but	with	a	poor	sound.	However,	we	believe	that	most	

instruments	will	require	their	own	measure,	as	the	nature	of	“good	sound”	varies	greatly	

between	instruments	and	playing	styles.	

Currently,	the	rhythm	feature	conflates	two	areas	of	musicianship,	playing	in	tempo,	

and	playing	on	beat.	We	believe	that	splitting	the	rhythm	feature	into	two	features,	one	to	

track	how	steady	the	tempo	is	and	the	other	to	track	how	far	off	beat	each	note	is	played,	

will	improve	the	results	of	measuring	the	musical	ability.		Splitting	the	rhythm	entropy	into	

these	two	features	could	also	make	the	issues	of	tempo	changes	and	playing	off	beat	easier	

to	solve.	

With	the	possibility	of	more	features	being	available	to	measure	the	musical	ability,	the	

question	of	how	to	combine	these	measures	to	get	an	overall	measure	arises.	We	believe	

that	using	standard	machine	learning	techniques,	such	as	neural	networks	or	support	vector	

machines,	to	combine	the	features	would	help	solve	this	problem.	However,	more	work	

would	be	needed	to	verify	this.	

7.5. Source	Code	and	Data	
	

	 The	software	and	data	used	for	this	paper	has	been	published	online	and	can	be	found	

at	the	following	location:	https://www.github.com/deadheadrussell/thesis.	Documentation	for	
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how	to	compile	and	run	the	code	to	replicate	the	results	of	this	thesis	is	provided.	All	provided	

code	is	licensed	under	the	MIT	license,	the	text	of	which	can	be	found	at	the	above	location.		
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A. Appendix	1:	Raw	Data	

	

Table	A.1:	List	of	songs	used	with	their	average	ratings	and	URLs	

Song	 Mean	Rating	 Song	URL	
01	 -1.20906004115	 https://www.youtube.com/watch?v=is6m1P11GOo	
02	 0.540713146544	 https://www.youtube.com/watch?v=KNV7SLksMRs	
03	 0.282561917948	 https://www.youtube.com/watch?v=nQ1Z-kk9Sag	
04	 -1.37609415656	 https://www.youtube.com/watch?v=8jlo-DVdEP0	
05	 0.118076965045	 https://www.youtube.com/watch?v=U5n4gCeiz0k	
06	 -0.397310060726	 https://www.youtube.com/watch?v=s5E3iGtyX18	
07	 0.552061535741	 https://www.youtube.com/watch?v=MV-v9xqKhUE	
08	 -0.817280725133	 https://www.youtube.com/watch?v=DEzWtijKXbc	
09	 0.10550775384	 https://www.youtube.com/watch?v=NXmegM4528E	
10	 0.988164022952	 https://www.youtube.com/watch?v=je0uwIhFsok	
11	 -0.865006934615	 https://www.youtube.com/watch?v=gOpnEOnmg5Y	
12	 -0.727145514822	 https://www.youtube.com/watch?v=8g7-Fk-ds2o	
13	 -0.549727146416	 https://www.youtube.com/watch?v=78MlhPSxcvM	
14	 -1.13296091605	 https://www.youtube.com/watch?v=sXLbBZmmT68	
15	 -1.33630620956	 https://www.youtube.com/watch?v=FjeMDvCdrtc	
16	 (number	not	used)		 	
17	 0.785223638852	 https://www.youtube.com/watch?v=QZuWSrH9T9s	
18	 -0.13549787198	 https://www.youtube.com/watch?v=H2x7elKbLl0	
19	 1.26949089908	 https://www.youtube.com/watch?v=ALF8C1q5VrY	
20	 -0.4553024383	 https://www.youtube.com/watch?v=Is0Dts2tT4Y	
21	 -0.162334161674	 https://www.youtube.com/watch?v=-SJuHRMfF2w	
22	 0.744275186681	 https://www.youtube.com/watch?v=F3wZUXpYQls	
23	 0.181570576065	 https://www.youtube.com/watch?v=fE3mFOwUxdk	
24	 -0.300802391868	 https://www.youtube.com/watch?v=6QUWkFeGQ0A	
25	 -0.464649038018	 https://www.youtube.com/watch?v=8RFTB5vgV_4	
26	 0.753963122766	 https://www.youtube.com/watch?v=XCMrXC8D05Q	
27	 0.46106774938	 https://www.youtube.com/watch?v=-RuEDNYQQ40	
28	 0.522143251701	 https://www.youtube.com/watch?v=r35Ius6JPS8	
29	 0.0898903225722	 https://www.youtube.com/watch?v=wt0qhMEg-Xk	
30	 1.03199524634	 https://www.youtube.com/watch?v=pm3WFJOzjVc	
31	 0.273614895995	 https://www.youtube.com/watch?v=Yvz_LpQDr0k	
32	 -0.257767486821	 https://www.youtube.com/watch?v=NJPAjiSX7Rk	
33	 0.54512634795	 https://www.youtube.com/watch?v=FXDlwkuInBY	
34	 -0.0514455517722	 https://www.youtube.com/watch?v=4atn3ue-nEM	
35	 1.26949089908	 https://www.youtube.com/watch?v=4PekdeINQco	
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36	 (number	not	used)	 	
37	 (number	not	used)	 	
38	 0.211627425481	 https://www.youtube.com/watch?v=HYPh7UCzpHc	
39	 1.26949089908	 https://www.youtube.com/watch?v=PvE88H8vb-4	
40	 -0.58227507332	 https://www.youtube.com/watch?v=R9WTlP08LEg	
41	 0.16320814922	 https://www.youtube.com/watch?v=c1huRuo6Wj0	
42	 -0.207865123	 https://www.youtube.com/watch?v=jtN8oBjMr_E	
	


